VS30, slope, H800 and f0: performance of various site-condition proxies in reducing ground-motion aleatory variability and predicting nonlinear site response

نویسنده

  • Fabrice Cotton
چکیده

The aim of this paper is to investigate the ability of various site‐condition proxies (SCPs) to reduce ground‐motion aleatory variability and evaluate how SCPs capture nonlinearity site effects. The SCPs used here are time‐averaged shear‐wave velocity in the top 30 m (VS30), the topographical slope (slope), the fundamental resonance frequency (f0) and the depth beyond which Vs exceeds 800 m/s (H800). We considered first the performance of each SCP taken alone and then the combined performance of the 6 SCP pairs [VS30–f0], [VS30–H800], [f0–slope], [H800–slope], [VS30–slope] and [f0–H800]. This analysis is performed using a neural network approach including a random effect applied on a KiK‐net subset for derivation of ground‐motion prediction equations setting the relationship between various ground‐motion parameters such as peak ground acceleration, peak ground velocity and pseudo‐spectral acceleration PSA (T), and Mw, RJB, focal depth and SCPs. While the choice of SCP is found to have almost no impact on the median ground‐ motion prediction, it does impact the level of aleatory uncertainty. VS30 is found to perform the best of single proxies at short periods (T < 0.6 s), while f0 and H800 perform better at longer periods; considering SCP pairs leads to signifi‐ cant improvements, with particular emphasis on [VS30–H800] and [f0–slope] pairs. The results also indicate significant nonlinearity on the site terms for soft sites and that the most relevant loading parameter for characterising nonlinear site response is the “stiff” spectral ordinate at the considered period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Surface Geology on Seismic Motion

This study presents observations of nonlinear soil behavior evidence at several KiK-net sites. First, we compare the site responses performed with 1) the recordings from the aftershocks and 2) the recordings from the main event of the 2011 Tohoku earthquake at four sites. Then, to understand the influence of soil parameters on nonlinear effects, we extend the results to the whole network. We co...

متن کامل

Study on the Contrast between Two Seismic Response Analysis Programs of Soil Layer

56 ground motions of the bedrock and surface are selected from 28 stiff sites ( site class I and site classⅡ) of the KiK-net station.The peak acceleration, response spectra and shear strain of actual hard sites are calculated by using SHAKE2000 and LSSRLI-1. The similarities and differences between SHAKE2000 and LSSRLI-1 and their differences from measured records are analyzed. It provides a ba...

متن کامل

Influence of Real Ground Motion Records in Performance Assessment of RC Buildings

Reinforced concrete frame buildings with Open Ground Story (OGS) are one of the most common building configurations in urban habitat. These configurations are known to be vulnerable to seismic excitations, primarily due to the sudden loss in strength in the ground story and differential stiffness distribution throughout the structure. The differential stiffness distribution is attributed primar...

متن کامل

A Numerical Evaluation of Seismic Response of Shallow Soil Deposits

This paper employs one-dimensional numerical ground response analysis models to investigate seismic response of shallow cohesive and non-cohesive soil deposits on vertical propagation of horizontal shear waves. Soil response is modelled by traditional equivalent-linear (EL) frequency-domain analysis using DEEPSOIL software and nonlinear (NL) time-domain analysis using OPENSEES software. The ana...

متن کامل

Nonlinear Dynamic Analysis of Pile Foundation Subjected to Strong Ground Motion Using Fiber Elements

In this paper, pile behavior embedded in layered soil deposits subjected to seismic loadings is analyzed using a nonlinear fiber element for simulation of soil – pile interactions. In the created model, both pile and surrounding soil are modeled using fiber elements in a practical Beam on Nonlinear Winkler Foundation (BNWF) concept. Herein, the features of DRAIN–3DX finite element software are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017